SEO Blog

0111月 2018

At present, there are many types of inverters on the market. In order to simplify the management and explore the advantages of centralized purchasing, many EPC manufacturers often use limited types of inverters to design as many cases as possible, which will inevitably involve the use of inverter capacity reduction. Small scale capacity reduction is not a big problem. However, the use of large-scale capacity reduction, not only will cause a waste of inverter costs, but also can not get the desired power generation.

 

1.Waste of resources
For a simple example, the original 10kW inverter used to carry 6kW photovoltaic components, equivalent to the inverter used only 60% of the workload, time will inevitably lead to waste of resources, not conducive to the LCOE optimization. Of course, the small case is good, if it is a MW large case, waste can not be ignored.
2.Shorten the string length and reduce overall power generation.

(a)Not conducive to string optimization design
For some power level inverter, the number of DC input terminals is closely related to the rated power of MPPT module. If the power of 10 kW MPPT module is reduced to 6 kW, the length of the module string will be reduced to 60%, while the open circuit and working voltage of the series will be reduced to 60%. Obviously, this is not the optimal design.

(b)Not conducive to efficient inverter operation
As mentioned above, with the series open circuit and working voltage reduced to 60% of the original, the use of reduced capacity will have a significant impact on the operation behavior of the inverter.

 

Influence on Start-up and Shut-down Time of Inverter: After the voltage in series is reduced, the start-up time in the morning is delayed, the shut-down time in the evening is advanced, the daily power generation time is shortened, and the power generation capacity is reduced.

 

The influence on the working mode of inverter: the series inverter consists of two power conversion units, the former DC / DC realizes MPPT function and the latter DC / AC realizes inverter function. The former DC / DC is implemented by boost topology. Its working time is determined by the input voltage of the series. It works when the input voltage is lower than the set value, and stops when the input voltage is higher than the set value. With the decrease of series voltage, the working time of DC / DC module increases, and the average conversion efficiency of inverter decreases, resulting in the reduction of overall power generation.

 

It can be seen that the use of inverter capacity reduction is achieved at the cost of shortening the string length and reducing the input voltage. Its advantage is to reduce the use of inverter model, while the inverter long-term operation in light-load state, its life will be extended to a certain extent; The disadvantage is that the use of capacity reduction will not only waste the inverter resources, but also is not conducive to the inverter more efficient work, resulting in a reduction in overall power generation.

 

REVO-E 3-5kW Hybrid Solar Energy Storage Inverters

1. PV and utility power take the load at same time ( can setting ).
2. Output power factor PF=1.0
3. On/Off grid with energy storage.
4. AC charging and AC output time setting.
5. Charging voltage and charging current timing.
6. External Wi-Fi device optional.
7. Connected with battery optional.
8. Wide PV input range 120-450VDC.
9. MAX PV Array Power 4500W.

Learn More

2310月 2018

The cost mainly considers the difference between the four parts. We compare the whole power system. The first is the power plug-in box, because 48V DC power supply in the telecommunications industry, large-scale application, low cost, single watt cost is much lower than the 12V server power price. Moreover, there is no calculation of the total cost difference caused by the need for multiple power plug-ins in the 12V architecture, while the 48V architecture only needs a single plug-in box. Secondly, the battery BBU, as mentioned earlier, the 12V BBU structure of the battery is often required to regulate DC / DC power supply, and the 48V structure is not required to configure, this part of the battery BBU using 48V structure is also very advantageous; Secondly, the bus bar and other transmission and distribution, because the 48V structure greatly reduces the size and number of copper bars, and only a single plug-in frame, this part of the 48V structure also has a great cost advantage; Finally, the comparison of VRM power supply on the motherboard, using 48V architecture, the server motherboard using a large number of applications of BMP board power supply to the CPU and other power supply, the cost is not high. The 12V architecture also requires multiple VRM power supply to CPU, which has little difference. Therefore, from the previous comparison, the 48V architecture has great advantages.

 

SHW48100 Hot Swappable 48VDC Outdoor Solar Telecom Power Supply System for BTS

1.Hot Swappable Easy to Maintance
2.Smart Monitor Control System
3.Various Human-computer Interface
4.Protection Degree: IP55
5.Adopt advanced MCU microprocessor control technology.
6.Advanced MPPT Technology, High converting efficiency higher than 97% for minimizing energy loss.
7.Reversed current protection at night, over voltage and reverse polarity protection.
8.Capable of selecting different charging mode for various types of batteries.
9.Protection degree:IP55.
10.Industy-leading power density compact size and high reliability.
11.Doorframe designed with waterproof structure, posted on the seal and equipped with waterproof lock on the door double insulation design.
12.Cabine adopt quality galvanized sheet or aluminum coated steel sheet as material, surface coating anti-UV power.
13.Suitable for outdoor installation.

Learn More

telecom power supply,telecom power system

1510月 2018

The basic principle of pulse width modulation (PWM): The control method is to control the on and off of the switching device of the inverter circuit, so that the output end can get a series of pulses with equal amplitude, and use these pulses to replace the sine wave or the required waveform. That is to say, a plurality of pulses are generated in the half period of the output waveform, so that the equivalent voltage of each pulse is sinusoidal waveform, and the output is smooth and the low-order harmonics are few. By adjusting the width of each pulse according to certain rules, the output voltage and frequency of the inverter circuit can be changed.

For example, by dividing the sinusoidal half-wave waveform into N equal parts, the sinusoidal half-wave can be regarded as a waveform composed of N pulses connected to each other. The pulse widths are equal to ∏/n, but the amplitudes are different, and the top of the pulse is not a horizontal line, but a curve. The amplitudes of each pulse change according to the sinusoidal law. If the above pulse sequence is replaced by the same number of equal amplitude and unequal width rectangular pulse sequence, the midpoint of the rectangular pulse and the corresponding sinusoidal equivalence midpoint coincide, and the rectangular pulse and the corresponding sinusoidal part area (impulse) is equal, a set of pulse sequence is obtained, which is called PWM waveform. It can be seen that the pulse width varies according to the sine rule. According to the same impulse equivalent effect, the PWM waveform and the sine half wave are equivalent. For sine negative half cycle, PWM waveform can also be obtained in the same way.

In the PWM waveform, the amplitude of each pulse is equal. To change the amplitude of the equivalent output sine wave, only the width of each pulse can be changed according to the same proportion coefficient. Therefore, in the AC-DC-AC inverter, the output pulse voltage of the PWM inverter circuit is the amplitude of the DC voltage.

According to the above principle, the width and interval of each pulse in PWM waveform can be calculated accurately after the sine frequency, amplitude and the number of pulses in half period are given. According to the result of calculation, the PWM waveform can be obtained by controlling the on-off of all switching devices in the circuit.

 

SSP3111C 1-2KVA Modified Sine Wave Solar Power Inverter For Home With PWM Solar Charge Controller

Built-in PWM solar charge controller.
2.Modified sine wave output.
3.High frequency design.
4.Optional input voltage range.
5.Full automatic and silent operation.
6.Automatic charging.
7.Auto change AC-DC.
8.Over-load protection.
9.Automatic restart.
10.Three-steps intelligent charging control to recharging.
11.LCD display, audible and visual alarm.

Learn More

SSP3111C 1-2KVA High frequency Modified Sine Wave Off-grid Solar Power Inverter (modified sine wave inverter,off-grid solar power inverter) 1

0810月 2018

Outdoor stainless steel cabinet technology is constantly improving, so that stainless steel cabinet has the best anti-vibration, anti-impact, anti-corrosion, anti-dust, waterproof, anti-radiation performance, in order to ensure that the equipment works stably and reliably. All designs are people-oriented, so that users can use more smoothly, SOROTEC focused on stainless steel outdoor cabinet technical design, and technical updates.

 

Stainless steel cabinet is the most commonly used toughened glass doors and mesh doors. And its quality plays a key role. Usually, the front and rear door panels are never allowed to have distortion, expansion, depression, burrs and other phenomena, its flatness is usually less than 2 mm. The difference in the same slot also needs less than 2 mm, and the installed door panels can not have obvious upward or downward adverse phenomenon, to ensure the flexibility of disassembly and assembly. When opening and closing the door, it must be flexible. The angle should be greater than or equal to 90 degrees. It is forbidden to damage spraying when the door rotates.

 

Only paying more attention to the small details of stainless steel cabinet doors will help attract more customers. Different types of doors will directly affect buyers’ decision to make purchases.

 

SOROTEC IP55 Protection Outdoor Telecom Cabinet

■.Highly integrated outdoor electrical enclosure with strong housing ability, can be used as equipment cabinet, battery cabinet or integrated cabinet
■.Well environmental adaptability with IP55 class protection and full ranges of temperature control system
■.Precise and separate temperature control reduces energy cost
■.Multi-layer panel structure makes less heat absorbance and saves energy
■.Anti-theft design and earthquake protection tests ensure outdoor electrical enclosure and equipments safety
■. Well environmental adaptability with IP55 class protection
■.Support delivery in whole or in parts with no limits to installation scenario

Learn More

Outdoor cabinet manufacturing materials Used in the manufacture of cabinet outside the plate, the thickness is greater than or equal to 1.5 mm galvanized plate, hot galvanizing plate after welding shall be outdoor powder coating. Temperature control device for cabinet type heat radiation with hot galvanizing plate for plate, temperature control device for refrigeration cabinet use is greater than or equal to 1.5 mm galvanized plate with 10mm insulation cotton structure into a sheet. The base cabinet is made of cold rolled steel plate thickness not less than 2mm, after welding galvanizing surface treatment. For the metal cabinet, after or after surface treatment, should have the ability to resist corrosion and electrochemical reaction. Non metal parts (including insulated wire, cable and foam material) should be flame retardant materials, the combustion of flame retardant should be able to pass the test requirements.

109月 2018

With the large-scale construction of data center, users pay more attention to energy cost and efficiency. The future development direction of power supply technology in data center must be direct power supply technology. While eliminating the traditional UPS equipment investment and site occupation and reducing the early cost, it also reduces the later operating cost by reducing conversion stages and improving power supply efficiency. And what is said here to improve efficiency, not only refers to the high efficiency of the grid side to the input side of IT equipment on the supply circuit path, but also the high efficiency and green of primary energy side to the CPU and other energy path. Although the PUE value of traditional concept is likely to increase, the energy consumption per unit calculation is reduced. The overall development trend of power supply technology in future data centers is that high voltage/centralized/AC large UPS will develop towards low voltage/distributed/DC small UPS, from centralized lead-acid batteries in computer rooms to distributed lithium batteries embedded in IT cabinets and even servers, from polluted fossil fuels to environmentally friendly green energy sources. .

The core of uninterruptible power supply technology in data center is uninterruptible power supply and its battery, so different battery connection positions also determine different power supply architecture. At present, the backup battery voltage of the industry mainstream from high to low has more than 400 volts of UPS, to 380V, 240V and 48V of DC power supply, and even 12V of batteries embedded in IT equipment. There are even small UPS with flywheels of medium voltage or lower voltage such as 5V. The closer the battery is to the terminal server motherboard or CPU, the more decentralized the power supply system, and the more distributed the corresponding IT system; the closer the battery is to the terminal, the higher the customization degree of the power supply system, the greater the difficulty for ordinary users to carry out the scale; the closer the battery is to the terminal, the higher the control and management level of IT power supply and battery required. Finally, the closer the battery is to the end, the smaller the transition stages from the grid to the CPU supply path, resulting in higher conversion efficiency, but the transmission loss may increase on the low-voltage side. Therefore, compared with centralized and distributed, high-voltage or low-voltage, AC or DC, the choice of different power supply structure will greatly affect the reliability of the power supply system, power supply efficiency, cost, and so on, as well as the maturity of technology, ecology and application flexibility.

In addition, with the development of battery technology and the introduction of green energy such as wind energy, solar energy and fuel cell into the data center, more opportunities and challenges are brought to the data center. In a sense, the technology of uninterrupted power supply in data centers will ultimately depend on the development of battery technology, and battery innovation will bring changes in the power supply architecture of data centers. For example, with the development of technology from traditional low-density lead-acid batteries to high-energy-density lithium batteries, backup batteries are likely to be replaced by IT cabinets or even placed inside IT devices. With the development of the same battery technology, it is possible to realize the energy storage of wind energy, solar energy and other volatile green energy. It will also change the traditional data center from a single grid power supply mode.

 

MPS9335C 10-300KVA High Frequency Online Modular Type UPS

1.Superior energy saving and environment-friendly:
Efficiency > 96% at 50%-75% rated load, and > 95% at 25% rated load; Input PF > 0.99,input THDi<3%.
2. Superior capability of powering load:
Output PF is 0.9 or 1, no need of power deration with load of leading or lagging PF.
3. Easy-to-install:
Top or bottom cabling, no need of input cabling cabinet.
4. Easy-to-maintain:
Full front access, UPS, failed part can be replaced shortly.
5. Easy-to-modify:
The number of battery cells can be configured flexibly, so the original batteries can be used when modifying the legacy system; moreover, the battery cell can be replaced in time when it fails
without interrupting the normal operation of UPS.
6.6-inch extra large LCD that can display 12 language (Chinese ,English ,Russian, French ,Spanlish and so on).
7.Provide large LCD touch screen (optional).
8.Each UPS modules provide 4.5KW charge capacity. equivalent to 10 to 12A.
9.On-Line Double Conversion, fully isolating the influences of power grid pollution and power failure from utility power supply and diesel generator to load.
10. Advanced DSP full digital control technologies realize higher system stability, online capacity expansion and maintenance.
11.Advanced distributed active parallel technology realizes parallel operation of 4 UPS units and online capacity expansion without centralized bypass cabinet.
12.Digital load sharing technology features extra low cross current and extreme high system reliability in parallel operation.
13.Adaptive to severe power grid environment due to extra wide input voltage and frequency ranges.
14.Extra strong capability to withstand output overload and short circuit, ensuring the system stability and system safety at limit conditions.
15 Intelligent battery management maintains battery automatically to prolong the battery life.
16. Efficient heat dissipation and effective protection under severe environment due to its independent layer-sealed ventilation channel and redundant fan design, as well as the paint-protected
circuit boards and built-in dust filter.
17.Applicable voltage south America.

Learn More

MPS9335C 10-300KVA High Frequency Online Modular Type UPS